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Introduction

We want to find all the integer solutions to the equation

X 2 + Y 2 = Z 2 (1)

We will focus mainly on the solutions that satisfy one more condition,
namely,

gcd(x , y , z) = 1

These solutions are called primitive solutions.
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Rational Hunt

Let us divide (1) by Z 2, set x = X/Z , y = Y /Z and look at the equation

x2 + y2 = 1 (2)

We only need to find all the rational solutions of (2).
Clearly, (−1, 0) is one such solution.

If (u, v) is another rational solution of (2), we can join these two points
and get the straight line

y =
v

u + 1
(x + 1)
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Rational Hunt continues

This straight line has a rational slope

t =
v

u + 1

This line meets the Y -axis at the rational point (0, t).

The converse of this is also true. The line through (−1, 0) having a
rational slope t is given by

y = t(x + 1)

Plugging this into (2), we get

x2 + t2(x + 1)2 = 1, x = −1,
1− t2

1 + t2
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Rational treasure found

So, y = t(x + 1) meets the unit circle at the rational point

(x , y) =

(
1− t2

1 + t2
,

2t

1 + t2

)
(3)

So, by drawing all such lines of rational slope, we can be sure that we
have accounted for every rational point on our circle!
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Integer Hunt

X Y Possible? Reason

even even ✗ gcd(x , y , z) = 1

odd odd ✗ Z 2 = X 2 + Y 2 ≡ 2 (mod 4)

odd even ✓ (3, 4, 5) is one such solution

even odd ✓ (4, 3, 5) is one such solution

Parity Analysis
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Integer Hunt continues

Given a rational point (x , y) parameterized by t, write t = m/n in its
lowest terms, i.e. gcd(m, n) = 1.

Plugging this into (3), we have

x =
X

Z
=

m2 − n2

m2 + n2
, y =

Y

Z
=

2mn

m2 + n2

So, there must be some integer k such that

kX = m2 − n2, kY = 2mn, kZ = m2 + n2
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Integer treasure found

Now,

k | m2 − n2 and k | m2 + n2

⇒ k | 2m2 and k | 2n2

⇒ k | 2

Thus, k = 1 or k = 2.

But, if k = 2, then

2X = m2 − n2

=⇒ 2 ≡ m2 − n2 (mod 4)

which is a contradiction.

Hence, we must have k = 1.
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Final Parametrization

Plugging in k = 1, we get the final solution as

(X ,Y ,Z ) = (m2 − n2, 2mn,m2 + n2)

for coprime m, n, one odd and the other even.
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Jargon

1 Rational points are those of the form (p, q) with p, q ∈ Q.

2 Rational lines are those of the form ax + by + c = 0 with a, b, c ∈ Q.

3 Rational conics are those of the form
ax2 + bxy + cy2 + dx + fy + g = 0 with a, b, c , d , f , g ∈ Q.

Some observations:

1 A line passing through two rational points is a rational line.

2 Two rational lines intersect at a rational point.

3 A rational conic and a rational line (and hence, two rational conics)
may not intersect at rational points.

For example, y = x2 + 1 and y = x + 2 intersects at x = 1±
√
5

2 .
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An Interesting Question

We want to address the question of whether we can generalize these tricks
to find integer solutions to any equation of the form

X 2 + Y 2 = nZ 2

for some integer n.

It can be done iff there are integers s and t such that n = s2 + t2.

Let us note that, if n = s2 + t2, then

X 2 + Y 2 = (s2 + t2)Z 2 = (sZ )2 + (tZ )2

and hence, (X ,Y ) = (sZ , tZ ) is a solution.
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The (not so) Interesting Expression

And, if the equation has a non-trivial integer solution (x , y , z), then

x2 + y2 = nz2

and so nz2 is a sum of two squares.

But, since the squarefree part of nz2 is same as the squarefree part of n,
our n must also be a sum of squares.

And, in that case, given one primitive non-trivial solution (x0, y0, z0), the
others are given by the parametrization

x = x0np
2 − 2qnz0p + 2q2y0

y = y0np
2 − 2qnz0p + 2q2x0

z = z0np
2 − 2qx0p − 2qy0p + 2q2z0
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Another interesting Question

Now, we want to ask whether the equation

aX 2 + bY 2 = cZ 2

has integer solutions.

We basically want to find at least one rational point on the ellipse

ax2 + by2 = c

and this turns out to be much more difficult than the last one.
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Another Interesting Answer

Theorem (Legendre)

Let a, b, c be coprime positive integers. Then, the equation

aX 2 + bY 2 = cZ 2

has a non-trivial rational solution iff(
−bc

a

)
=

(
−ac

b

)
=

(
ab

c

)
= 1
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Jacobi Symbol

Definition (Jacobi Symbol)

The Jacobi Symbol written as
(
n
m

)
is defined for positive odd m as( n

m

)
=

(
n

p1

)a1 ( n

p2

)a2

. . .

(
n

pk

)ak

where m = pa11 pa22 . . . pakk and
(

n
p1

)
is the Legendre symbol.

Definition (Legendre Symbol)

For an odd prime p and an integer a, we define the Legendre Symbol of a
with respect to p as

(
a

p

)
=


1 if a is a quadratic residue modulo p and a ̸≡ 0 (mod p)

−1 if a is a quadratic non-residue modulo p

0 if a ≡ 0 (mod p)
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Theorem (Hasse)

A homogeneous quadratic equation in several variables is solvable by
integers, not all zero, if and only if it is solvable in real numbers and in
p-adic numbers for each prime p.
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Fermat’s Last Theorem

Can we use this method to see whether the equation

X 3 + Y 3 = Z 3

has an integer solution?

That is, can we ask whether the equation

x3 + y3 = 1

has a rational solution?

Sadly, we cannot directly use the geometric principle that worked so well
for conics because a line generally meets a cubic in three points. And if we
have one rational point, we cannot project the cubic onto a line, because
each point on the line would then correspond to two points on the curve.
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Why Rational points?

Elliptic Curves

Rational Points on Elliptic Curves
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Love Poems

Theorem (Mordell)

Let C be a non-singular cubic curve with rational coefficients. Then the
group Γ of rational points on C is finitely generated.

Theorem (Nagell-Lutz)

Let
y2 = x3 + ax2 + bx + c

be a non-singular cubic curve with integer coefficients a, b, c , and let D
be the discriminant of the cubic polynomial

D = −4a3c + a2b2 + 18abc − 4b3 − 27c2

Let P = (x , y) be a rational point of finite order. Then x and y are
integers, and either y = 0, or y |D.
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